Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Clin Cancer Res ; 30(1): 94-105, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37889114

RESUMO

PURPOSE: To assess the impact of PHF6 alterations on clinical outcome and therapeutical actionability in T-cell acute lymphoblastic leukemia (T-ALL). EXPERIMENTAL DESIGN: We described PHF6 alterations in an adult cohort of T-ALL from the French trial Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/2005 and retrospectively analyzed clinical outcomes between PHF6-altered (PHF6ALT) and wild-type patients. We also used EPIC and chromatin immunoprecipitation sequencing data of patient samples to analyze the epigenetic landscape of PHF6ALT T-ALLs. We consecutively evaluated 5-azacitidine efficacy, alone or combined with venetoclax, in PHF6ALT T-ALL. RESULTS: We show that PHF6 alterations account for 47% of cases in our cohort and demonstrate that PHF6ALT T-ALL presented significantly better clinical outcomes. Integrative analysis of DNA methylation and histone marks shows that PHF6ALT are characterized by DNA hypermethylation and H3K27me3 loss at promoters physiologically bivalent in thymocytes. Using patient-derived xenografts, we show that PHF6ALT T-ALL respond to the 5-azacytidine alone. Finally, synergism with the BCL2-inhibitor venetoclax was demonstrated in refractory/relapsing (R/R) PHF6ALT T-ALL using fresh samples. Importantly, we report three cases of R/R PHF6ALT patients who were successfully treated with this combination. CONCLUSIONS: Overall, our study supports the use of PHF6 alterations as a biomarker of sensitivity to 5-azacytidine and venetoclax combination in R/R T-ALL.


Assuntos
Leucemia Mieloide Aguda , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Humanos , Azacitidina/farmacologia , Azacitidina/uso terapêutico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Estudos Retrospectivos , Fatores de Transcrição/genética , Epigênese Genética , Leucemia Mieloide Aguda/genética , Proteínas Repressoras/genética
2.
J Exp Med ; 221(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38117256

RESUMO

Mucosal-associated invariant T (MAIT) cells harbor evolutionarily conserved TCRs, suggesting important functions. As human and mouse MAIT functional programs appear distinct, the evolutionarily conserved MAIT functional features remain unidentified. Using species-specific tetramers coupled to single-cell RNA sequencing, we characterized MAIT cell development in six species spanning 110 million years of evolution. Cross-species analyses revealed conserved transcriptional events underlying MAIT cell maturation, marked by ZBTB16 induction in all species. MAIT cells in human, sheep, cattle, and opossum acquired a shared type-1/17 transcriptional program, reflecting ancestral features. This program was also acquired by human iNKT cells, indicating common differentiation for innate-like T cells. Distinct type-1 and type-17 MAIT subsets developed in rodents, including pet mice and genetically diverse mouse strains. However, MAIT cells further matured in mouse intestines to acquire a remarkably conserved program characterized by concomitant expression of type-1, type-17, cytotoxicity, and tissue-repair genes. Altogether, the study provides a unifying view of the transcriptional features of innate-like T cells across evolution.


Assuntos
Células T Invariantes Associadas à Mucosa , Humanos , Bovinos , Animais , Camundongos , Ovinos , Diferenciação Celular , Membrana Celular , 60562 , Especificidade da Espécie , Mamíferos/genética
3.
Mol Cancer ; 22(1): 108, 2023 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-37430263

RESUMO

The reintegration of excised signal joints resulting from human V(D)J recombination was described as a potent source of genomic instability in human lymphoid cancers. However, such molecular events have not been recurrently reported in clinical patient lymphoma/leukemia samples. Using a specifically designed NGS-capture pipeline, we here demonstrated the reintegration of T-cell receptor excision circles (TRECs) in 20/1533 (1.3%) patients with T-cell acute lymphoblastic leukemia (T-ALL) and T-cell lymphoblastic lymphoma (T-LBL). Remarkably, the reintegration of TREC recurrently targeted the tumor suppressor gene, ZFP36L2, in 17/20 samples. Thus, our data identified a new and hardly detectable mechanism of gene deregulation in lymphoid cancers providing new insights in human oncogenesis.


Assuntos
Carcinogênese , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Humanos , Carcinogênese/genética , Transformação Celular Neoplásica/genética , Instabilidade Genômica , Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição
5.
Mol Cancer ; 21(1): 65, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246138

RESUMO

BACKGROUND: Anaplastic large cell lymphoma positive for ALK (ALK+ ALCL) is a rare type of non-Hodgkin lymphoma. This lymphoma is caused by chromosomal translocations involving the anaplastic lymphoma kinase gene (ALK). In this study, we aimed to identify mechanisms of transformation and therapeutic targets by generating a model of ALK+ ALCL lymphomagenesis ab initio with the specific NPM-ALK fusion. METHODS: We performed CRISPR/Cas9-mediated genome editing of the NPM-ALK chromosomal translocation in primary human activated T lymphocytes. RESULTS: Both CD4+ and CD8+ NPM-ALK-edited T lymphocytes showed rapid and reproducible competitive advantage in culture and led to in vivo disease development with nodal and extra-nodal features. Murine tumors displayed the phenotypic diversity observed in ALK+ ALCL patients, including CD4+ and CD8+ lymphomas. Assessment of transcriptome data from models and patients revealed global activation of the WNT signaling pathway, including both canonical and non-canonical pathways, during ALK+ ALCL lymphomagenesis. Specifically, we found that the WNT signaling cell surface receptor ROR2 represented a robust and genuine marker of all ALK+ ALCL patient tumor samples. CONCLUSIONS: In this study, ab initio modeling of the ALK+ ALCL chromosomal translocation in mature T lymphocytes enabled the identification of new therapeutic targets. As ROR2 targeting approaches for other cancers are under development (including lung and ovarian tumors), our findings suggest that ALK+ ALCL cases with resistance to current therapies may also benefit from ROR2 targeting strategies.


Assuntos
Linfoma Anaplásico de Células Grandes , Quinase do Linfoma Anaplásico/genética , Animais , Humanos , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/metabolismo , Linfoma Anaplásico de Células Grandes/patologia , Camundongos , Fenótipo , Proteínas Tirosina Quinases/metabolismo , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/genética , Translocação Genética
6.
Genome Res ; 32(7): 1343-1354, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34933939

RESUMO

Chromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called enhancer hijacking We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus (IGH) and proto-oncogene CCND1 that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human IGH locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the IGH locus of healthy B cells that was absent in samples with IGH-CCND1 translocations. The appearance of H3K4me3-BD over CCND1 in the latter was associated with overexpression and extensive chromatin accessibility of its gene body. We observed similar cancer-specific H3K4me3-BDs associated with hijacking of super-enhancers of other common oncogenes in B cell (MAF, MYC, and FGFR3/NSD2) and T cell malignancies (LMO2, TLX3, and TAL1). Our analysis suggests that H3K4me3-BDs can be created by super-enhancers and supports the new concept of epigenomic translocation, in which the relocation of H3K4me3-BDs from cell identity genes to oncogenes accompanies the translocation of super-enhancers.


Assuntos
Epigenômica , Translocação Genética , Cromatina/genética , Histonas , Humanos , Oncogenes
7.
Genome Res ; 32(7): 1328-1342, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34162697

RESUMO

Broad domains of H3K4 methylation have been associated with consistent expression of tissue-specific, cell identity, and tumor suppressor genes. Here, we identified broad domain-associated genes in healthy human thymic T cell populations and a collection of T cell acute lymphoblastic leukemia (T-ALL) primary samples and cell lines. We found that broad domains are highly dynamic throughout T cell differentiation, and their varying breadth allows the distinction between normal and neoplastic cells. Although broad domains preferentially associate with cell identity and tumor suppressor genes in normal thymocytes, they flag key oncogenes in T-ALL samples. Moreover, the expression of broad domain-associated genes, both coding and noncoding, is frequently deregulated in T-ALL. Using two distinct leukemic models, we showed that the ectopic expression of T-ALL oncogenic transcription factor preferentially impacts the expression of broad domain-associated genes in preleukemic cells. Finally, an H3K4me3 demethylase inhibitor differentially targets T-ALL cell lines depending on the extent and number of broad domains. Our results show that the regulation of broad H3K4me3 domains is associated with leukemogenesis, and suggest that the presence of these structures might be used for epigenetic prioritization of cancer-relevant genes, including long noncoding RNAs.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Epigênese Genética , Histonas/metabolismo , Humanos , Oncogenes , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
8.
Blood ; 138(19): 1855-1869, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34125178

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a group of aggressive hematological cancers with dismal outcomes that are in need of new therapeutic options. Polycomb repressor complex 2 (PRC2) loss-of-function alterations were reported in pediatric T-ALL, yet their clinical relevance and functional consequences remain elusive. Here, we extensively analyzed PRC2 alterations in a large series of 218 adult T-ALL patients. We found that PRC2 genetic lesions are frequent events in T-ALL and are not restricted to early thymic precursor ALL. PRC2 loss of function associates with activating mutations of the IL7R/JAK/STAT pathway. PRC2-altered T-ALL patients respond poorly to prednisone and have low bone marrow blast clearance and persistent minimal residual disease. Furthermore, we identified that PRC2 loss of function profoundly reshapes the genetic and epigenetic landscapes, leading to the reactivation of stem cell programs that cooperate with bromodomain and extraterminal (BET) proteins to sustain T-ALL. This study identifies BET proteins as key mediators of the PRC2 loss of function-induced remodeling. Our data have uncovered a targetable vulnerability to BET inhibition that can be exploited to treat PRC2-altered T-ALL patients.


Assuntos
Regulação Leucêmica da Expressão Gênica , Mutação com Perda de Função , Complexo Repressor Polycomb 2/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Animais , Antineoplásicos Hormonais/uso terapêutico , Linhagem Celular Tumoral , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação com Perda de Função/efeitos dos fármacos , Masculino , Camundongos SCID , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Prednisona/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Células Tumorais Cultivadas , Adulto Jovem
9.
Cell Mol Immunol ; 18(7): 1662-1676, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34117371

RESUMO

Several obstacles to the production, expansion and genetic modification of immunotherapeutic T cells in vitro have restricted the widespread use of T-cell immunotherapy. In the context of HSCT, delayed naïve T-cell recovery contributes to poor outcomes. A novel approach to overcome the major limitations of both T-cell immunotherapy and HSCT would be to transplant human T-lymphoid progenitors (HTLPs), allowing reconstitution of a fully functional naïve T-cell pool in the patient thymus. However, it is challenging to produce HTLPs in the high numbers required to meet clinical needs. Here, we found that adding tumor necrosis factor alpha (TNFα) to a DL-4-based culture system led to the generation of a large number of nonmodified or genetically modified HTLPs possessing highly efficient in vitro and in vivo T-cell potential from either CB HSPCs or mPB HSPCs through accelerated T-cell differentiation and enhanced HTLP cell cycling and survival. This study provides a clinically suitable cell culture platform to generate high numbers of clinically potent nonmodified or genetically modified HTLPs for accelerating immune recovery after HSCT and for T-cell-based immunotherapy (including CAR T-cell therapy).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Fator de Necrose Tumoral alfa , Técnicas de Cultura de Células , Diferenciação Celular , Humanos , Imunoterapia , Linfócitos T
10.
Sci Transl Med ; 13(595)2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039737

RESUMO

Adult "T cell" acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy that is associated with poor outcomes, requiring additional therapeutic options. The DNA methylation landscapes of adult T-ALL remain undercharacterized. Here, we systematically analyzed the DNA methylation profiles of normal thymic-sorted T cell subpopulations and 143 primary adult T-ALLs as part of the French GRAALL 2003-2005 trial. Our results indicated that T-ALL is epigenetically heterogeneous consisting of five subtypes (C1-C5), which were either associated with co-occurring DNA methyltransferase 3 alpha (DNMT3A)/isocitrate dehydrogenase [NADP(+)] 2 (IDH2) mutations (C1), TAL bHLH transcription factor 1, erythroid differentiation factor (TAL1) deregulation (C2), T cell leukemia homeobox 3 (TLX3) (C3), TLX1/in cis-homeobox A9 (HOXA9) (C4), or in trans-HOXA9 overexpression (C5). Integrative analysis of DNA methylation and gene expression identified potential cluster-specific oncogenes and tumor suppressor genes. In addition to an aggressive hypomethylated subgroup (C1), our data identified an unexpected subset of hypermethylated T-ALL (C5) associated with poor outcome and primary therapeutic response. Using mouse xenografts, we demonstrated that hypermethylated T-ALL samples exhibited therapeutic responses to the DNA hypomethylating agent 5-azacytidine, which significantly (survival probability; P = 0.001 for C3, 0.01 for C4, and 0.0253 for C5) delayed tumor progression. These findings suggest that epigenetic-based therapies may provide an alternative treatment option in hypermethylated T-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Adulto , Animais , Metilação de DNA/genética , Epigênese Genética , Epigenômica , Perfilação da Expressão Gênica , Humanos , Camundongos , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética
11.
J Clin Invest ; 130(12): 6395-6408, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33141118

RESUMO

Anaplastic large cell lymphoma (ALCL) is a mature T cell neoplasm that often expresses the CD4+ T cell surface marker. It usually harbors the t(2;5) (p23;q35) translocation, leading to the ectopic expression of NPM-ALK, a chimeric tyrosine kinase. We demonstrated that in vitro transduction of normal human CD4+ T lymphocytes with NPM-ALK results in their immortalization and malignant transformation. The tumor cells displayed morphological and immunophenotypical characteristics of primary patient-derived anaplastic large cell lymphomas. Cell growth, proliferation, and survival were strictly dependent on NPM-ALK activity and include activation of the key factors STAT3 and DNMT1 and expression of CD30 (the hallmark of anaplastic large-cell lymphoma). Implantation of NPM-ALK-transformed CD4+ T lymphocytes into immunodeficient mice resulted in the formation of tumors indistinguishable from patients' anaplastic large cell lymphomas. Integration of "Omic" data revealed that NPM-ALK-transformed CD4+ T lymphocytes and primary NPM-ALK+ ALCL biopsies share similarities with early T cell precursors. Of note, these NPM-ALK+ lymphoma cells overexpress stem cell regulators (OCT4, SOX2, and NANOG) and HIF2A, which is known to affect hematopoietic precursor differentiation and NPM-ALK+ cell growth. Altogether, for the first time our findings suggest that NPM-ALK could restore progenitor-like features in mature CD30+ peripheral CD4+ T cells, in keeping with a thymic progenitor-like pattern.


Assuntos
Quinase do Linfoma Anaplásico/biossíntese , Linfócitos T CD4-Positivos/enzimologia , Transformação Celular Neoplásica/metabolismo , Linfoma Anaplásico de Células Grandes/enzimologia , Células-Tronco Neoplásicas/enzimologia , Timo/enzimologia , Quinase do Linfoma Anaplásico/genética , Animais , Linfócitos T CD4-Positivos/patologia , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Humanos , Linfoma Anaplásico de Células Grandes/genética , Linfoma Anaplásico de Células Grandes/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/patologia , Timo/patologia
12.
J Exp Med ; 217(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32667968

RESUMO

Cell differentiation is accompanied by epigenetic changes leading to precise lineage definition and cell identity. Here we present a comprehensive resource of epigenomic data of human T cell precursors along with an integrative analysis of other hematopoietic populations. Although T cell commitment is accompanied by large scale epigenetic changes, we observed that the majority of distal regulatory elements are constitutively unmethylated throughout T cell differentiation, irrespective of their activation status. Among these, the TCRA gene enhancer (Eα) is in an open and unmethylated chromatin structure well before activation. Integrative analyses revealed that the HOXA5-9 transcription factors repress the Eα enhancer at early stages of T cell differentiation, while their decommission is required for TCRA locus activation and enforced αß T lineage differentiation. Remarkably, the HOXA-mediated repression of Eα is paralleled by the ectopic expression of homeodomain-related oncogenes in T cell acute lymphoblastic leukemia. These results highlight an analogous enhancer repression mechanism at play in normal and cancer conditions, but imposing distinct developmental constraints.


Assuntos
Elementos Facilitadores Genéticos , Hematopoese/genética , Receptores de Antígenos de Linfócitos T/genética , Timo/citologia , Animais , Proteínas Reguladoras de Apoptose/genética , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Desmetilação do DNA , Metilação de DNA/genética , Epigenoma , Regulação da Expressão Gênica , Rearranjo Gênico do Linfócito T , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Humanos , Ativação Linfocitária/imunologia , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Células-Tronco/citologia , Linfócitos T/citologia , Timócitos/metabolismo
13.
Genes Chromosomes Cancer ; 59(4): 261-267, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31677197

RESUMO

T-cell prolymphocytic leukemia (T-PLL) is an aggressive tumor with leukemic presentation of mature T-lymphocytes. Here, we aimed at characterizing the initial events in the molecular pathogenesis of T-PLL and particularly, at determining the point in T-cell differentiation when the hallmark oncogenic events, that is, inv(14)(q11q32)/t(14;14)(q11;q32) and t(X;14)(q28;q11) occur. To this end, we mined whole genome and transcriptome sequencing data of 17 and 11 T-PLL cases, respectively. Mapping of the 14q32.1 locus breakpoints identified only TCL1A, which was moreover significantly overexpressed in T-PLL as compared to benign CD4+ and CD8+ T-cells, as the only common oncogenic target of aberrations. In cases with t(14;14), the breakpoints mapped telomeric and in cases with inv(14) centromeric or in the 3'-untranslated region of TCL1A. Regarding the T-cell receptor alpha (TRA) locus-TCL1A breakpoint junctions, all 17 breakpoints involved recombination signal sequences and 15 junctions contained nontemplated (N-) nucleotides. All T-PLL cases studied carried in-frame TRA rearrangements on the intact allele, which skewed significantly toward usage of distal/central TRAV/TRAJ gene segments as compared to the illegitimate TRA rearrangements. Our findings suggest that the oncogenic TRA-TCL1A/MTCP1 rearrangements in T-PLL occur during opening of the TRA locus, that is, during the progression from CD4+ immature single positive to early double positive thymocyte stage, just before physiologic TCL1A expression is silenced. The cell carrying such an oncogenic event continues maturation and rearranges the second TRA allele to achieve a functional T-cell receptor. Thereafter, it switches off RAG and DNTT expression in line with the mature T-cell phenotype at presentation of T-PLL.


Assuntos
Rearranjo Gênico , Predisposição Genética para Doença , Leucemia Prolinfocítica de Células T/genética , Receptores de Antígenos de Linfócitos T/genética , Transcriptoma , Sequenciamento Completo do Genoma , Alelos , Aberrações Cromossômicas , Estudo de Associação Genômica Ampla , Humanos , Leucemia Prolinfocítica de Células T/diagnóstico , Proteínas de Fusão Oncogênica/genética , Fenótipo
14.
Blood Adv ; 3(3): 461-475, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755435

RESUMO

T cells represent a valuable tool for treating cancers and infectious and inherited diseases; however, they are mainly short-lived in vivo. T-cell therapies would strongly benefit from gene transfer into long-lived persisting naive T cells or T-cell progenitors. Here we demonstrate that baboon envelope glycoprotein pseudotyped lentiviral vectors (BaEV-LVs) far outperformed other LV pseudotypes for transduction of naive adult and fetal interleukin-7-stimulated T cells. Remarkably, BaEV-LVs efficiently transduced thymocytes and T-cell progenitors generated by culture of CD34+ cells on Delta-like ligand 4 (Dll4). Upon NOD/SCIDγC-/- engraftment, high transduction levels (80%-90%) were maintained in all T-cell subpopulations. Moreover, T-cell lineage reconstitution was accelerated in NOD/SCIDγC-/- recipients after T-cell progenitor injection compared with hematopoietic stem cell transplantation. Furthermore, γC-encoding BaEV-LVs very efficiently transduced Dll4-generated T-cell precursors from a patient with X-linked severe combined immunodeficiency (SCID-X1), which fully rescued T-cell development in vitro. These results indicate that BaEV-LVs are valuable tools for the genetic modification of naive T cells, which are important targets for gene therapy. Moreover, they allowed for the generation of gene-corrected T-cell progenitors that rescued SCID-X1 T-cell development in vitro. Ultimately, the coinjection of LV-corrected T-cell progenitors and hematopoietic stem cells might accelerate T-cell reconstitution in immunodeficient patients.


Assuntos
Lentivirus/genética , Células-Tronco/metabolismo , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Papio
15.
J Clin Oncol ; 35(23): 2683-2691, 2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-28605290

RESUMO

Purpose Early thymic precursor (ETP) acute lymphoblastic leukemia (ALL) is an immunophenotypically defined subgroup of T-cell ALL (T-ALL) associated with high rates of intrinsic treatment resistance. Studies in children have shown that the negative prognostic impact of chemotherapy resistance is abrogated by the implementation of early response-based intensification strategies. Comparable data in adults are lacking. Patients and Methods We performed comprehensive clinicobiologic, genetic, and survival analyses of a large cohort of 213 adult patients with T-ALL, including 47 patients with ETP-ALL, treated in the GRAALL (Group for Research on Adult Acute Lymphoblastic Leukemia) -2003 and -2005 studies. Results Targeted next-generation sequencing revealed that the genotype of immunophenotypically defined adult T-ALL is similar to the pediatric equivalent, with high rates of mutations in factors involved in cytokine receptor and RAS signaling (62.2%), hematopoietic development (29.7%), and chemical modification of histones (48.6%). In contrast to pediatric cases, mutations in DNA methylation factor genes were also common (32.4%). We found that despite expected high levels of early bone marrow chemotherapy resistance (87%), the overall prognosis for adults with ETP-ALL treated using the GRAALL protocols was not inferior to that of the non-ETP-ALL group (5-year overall survival: ETP, 59.6%; 95% CI, 44.2% to 72.0% v non-ETP, 66.5%; 95% CI, 58.7% to 73.2%; P = 0.33) and that allogeneic stem-cell transplantation had a beneficial effect in a large proportion of patients with ETP-ALL. Conclusion Our results suggest that the use of response-based risk stratification and therapy intensification abrogates the poor prognosis of adult ETP-ALL.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Neoplasias do Timo/genética , Neoplasias do Timo/terapia , Adulto , Ciclofosfamida/administração & dosagem , Metilação de DNA/genética , Análise Mutacional de DNA , Resistencia a Medicamentos Antineoplásicos , Feminino , Genótipo , Hematopoese/genética , Histonas/química , Humanos , Imunofenotipagem , Masculino , Prognóstico , Receptores de Citocinas/genética , Transdução de Sinais/genética , Taxa de Sobrevida , Transplante Homólogo , Proteínas ras/genética , Proteínas ras/metabolismo
16.
Blood Adv ; 1(12): 733-747, 2017 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-29296717

RESUMO

The oncogenic mechanisms driven by aberrantly expressed transcription factors in T-cell acute leukemia (T-ALL) are still elusive. MicroRNAs (miRNAs) play an important role in normal development and pathologies. Here, we examined the expression of 738 miRNA species in 41 newly diagnosed pediatric T-ALLs and in human thymus-derived cells. We found that expression of 2 clustered miRNAs, miR-125b/99a, peaks in primitive T cells and is upregulated in the T leukemia homeobox 3 (TLX3)-positive subtype of T-ALL. Using loss- and gain-of-function approaches, we established functional relationships between TLX3 and miR-125b. Both TLX3 and miR-125b support in vitro cell growth and in vivo invasiveness of T-ALL. Besides, ectopic expression of TLX3 or miR-125b in human hematopoietic progenitor cells enhances production of T-cell progenitors and favors their accumulation at immature stages of T-cell development resembling the differentiation arrest observed in TLX3 T-ALL. Ectopic miR-125b also remarkably accelerated leukemia in a xenograft model, suggesting that miR125b is an important mediator of the TLX3-mediated transformation program that takes place in immature T-cell progenitors. Mechanistically, TLX3-mediated activation of miR-125b may impact T-cell differentiation in part via repression of Ets1 and CBFß genes, 2 regulators of T-lineage. Finally, we established that TLX3 directly regulates miR-125b production through binding and transactivation of LINC00478, a long noncoding RNA gene, which is the host of miR-99a/Let-7c/miR-125b. Altogether, our results reveal an original functional link between TLX3 and oncogenic miR-125b in T-ALL development.

17.
Haematologica ; 101(6): 732-40, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26944475

RESUMO

UNLABELLED: Gene expression studies have consistently identified a HOXA-overexpressing cluster of T-cell acute lymphoblastic leukemias, but it is unclear whether these constitute a homogeneous clinical entity, and the biological consequences of HOXA overexpression have not been systematically examined. We characterized the biology and outcome of 55 HOXA-positive cases among 209 patients with adult T-cell acute lymphoblastic leukemia uniformly treated during the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003 and -2005 studies. HOXA-positive patients had markedly higher rates of an early thymic precursor-like immunophenotype (40.8% versus 14.5%, P=0.0004), chemoresistance (59.3% versus 40.8%, P=0.026) and positivity for minimal residual disease (48.5% versus 23.5%, P=0.01) than the HOXA-negative group. These differences were due to particularly high frequencies of chemoresistant early thymic precursor-like acute lymphoblastic leukemia in HOXA-positive cases harboring fusion oncoproteins that transactivate HOXA Strikingly, the presence of an early thymic precursor-like immunophenotype was associated with marked outcome differences within the HOXA-positive group (5-year overall survival 31.2% in HOXA-positive early thymic precursor versus 66.7% in HOXA-positive non-early thymic precursor, P=0.03), but not in HOXA-negative cases (5-year overall survival 74.2% in HOXA-negative early thymic precursor versus 57.2% in HOXA-negative non-early thymic precursor, P=0.44). Multivariate analysis further revealed that HOXA positivity independently affected event-free survival (P=0.053) and relapse risk (P=0.039) of chemoresistant T-cell acute lymphoblastic leukemia. These results show that the underlying mechanism of HOXA deregulation dictates the clinico-biological phenotype, and that the negative prognosis of early thymic precursor acute lymphoblastic leukemia is exclusive to HOXA-positive patients, suggesting that early treatment intensification is currently suboptimal for therapeutic rescue of HOXA-positive chemoresistant adult early thymic precursor acute lymphoblastic leukemia. TRIAL REGISTRATION: The GRAALL-2003 and -2005 studies were registered at http://www.clinicaltrials.gov as #NCT00222027 and #NCT00327678, respectively.


Assuntos
Expressão Gênica , Proteínas de Homeodomínio/genética , Fenótipo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Timo/metabolismo , Timo/patologia , Adulto , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Imunofenotipagem , Masculino , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/mortalidade , Prognóstico , Recidiva , Resultado do Tratamento , Adulto Jovem
20.
Oncotarget ; 6(22): 18956-65, 2015 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-26068967

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) represents expansion of cells arrested at specific stages of thymic development with the underlying genetic abnormality often determining the stage of maturation arrest. Although their outcome has been improved with current therapy, survival rates remain only around 50% at 5 years and patients may therefore benefit from specific targeted therapy. Interleukin receptor associated kinase 1 (IRAK1) is a ubiquitously expressed serine/threonine kinase that mediates signaling downstream to Toll-like (TLR) and Interleukin-1 Receptors (IL1R). Our data demonstrated that IRAK1 is overexpressed in all subtypes of T-ALL, compared to normal human thymic subpopulations, and is functional in T-ALL cell lines. Genetic knock-down of IRAK1 led to apoptosis, cell cycle disruption, diminished proliferation and reversal of corticosteroid resistance in T-ALL cell lines. However, pharmacological inhibition of IRAK1 using a small molecule inhibitor (IRAK1/4-Inh) only partially reproduced the results of the genetic knock-down. Altogether, our data suggest that IRAK1 is a candidate therapeutic target in T-ALL and highlight the requirement of next generation IRAK1 inhibitors.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/enzimologia , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Corticosteroides/farmacologia , Adulto , Apoptose/genética , Ciclo Celular/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Feminino , Técnicas de Silenciamento de Genes , Humanos , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Quinases Associadas a Receptores de Interleucina-1/biossíntese , Quinases Associadas a Receptores de Interleucina-1/genética , Células Jurkat , Masculino , Terapia de Alvo Molecular , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...